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1 Krull-Schmidt, Structure of Finitely Generated Abelian
Groups, and Group Actions

1.1 The Krull-Schmidt theorem

Theorem 1.1 (Krull-Schmidt). Suppose G has normal subgroups N; < G for 1 <i <.
Then G = Ny x --- x Ny iff NyN [[j=1 N; = {e} and N;--- N, =G.
J#i

Proof. For r = 2, Ny N Ny = {e} and N1Ny = G. Then if n; € N;, nynan;* = nfy € Ny.

Then ngnl_lnz_l = nl_ln’2n2_1 € Ni. But this is the product of something in N; and
something in Ny, and N; N Ny = {e}, so nhny

L—e. So nf = ng, which gives us that ng

and ny commute. So G = N x Ny = N1 X Ns.
Now induct on 7. Suppose this is true for r. Then Nj---N, N N,4y1 = {e} and
Nij--+N,11 = G. By induction, Ny --- N, = N; X -+ X N,. Applying the r = 2 case, we
get G =Ny X -+ X Np X Npgq. L]

Corollary 1.1. Let n = p}"'-- ‘pZ’“ with p; distinct primes and r; > 1. Then
ZInZ = L)pP L X - - - X LI L.
Corollary 1.2. If ged(m,n) =1, then
Z/mnZ = nZ/mnZ x mZ/mnZ = 7./mZ x L]nZ.

1.2 The structure theorem for finitely generated abelian groups

Definition 1.1. An abelian group is torsion-free if for all a € A\ {0} and n > 1, na # 0.

Definition 1.2. The torsion subgroup B of A is the subgroup of elements of A of finite
order.



Theorem 1.2 (structure theorem for finitely generated abelian groups). Let A be a finitely
generated abelian group. Then there exists a unique r,k > 0 and positive integers n; > 1
with ng | ng—1 | -+ | n1 such that

A27" x Z/TLlZ X Z/nkZ

Proof. We claim that torsion-free finitely generated abelian groups are free. Here is a
sketch: Choose aq,...,a, € A giving a minimal set of generators. We get m : Z" — A
sending e; — a;, where e; is the i-th coordiate unit element. Suppose x = 22:1 be; €
ker(w). Let d = ged(by,...,b.). If d # 1, there exists a y € Z" with dy = x. Then
y € ker(m). So we may assume d = 1. There exists ¢ € Aut(Z") = GL,(Z) such that
¢(e1) = x. Then Z" % 75 Iy A sends e1 — x — 0. But then mo ¢(e;) for 2 < i < r
generate A, contradicting minimality. So A = Z". For uniqueness, if A = Z" = Z°, then
AJ2A=TFL =TS sor =s.

Let B be the torsion subgroup of A. Note that A/B is torsion-free. We get an exact

sequence
0=-B—-A->7Z" —0.

We want to go back from Z" — A. Then for e; € Z", there exists some a; € A that maps
to e;. Since Z" is free in Ab, there exists ¢ : Z" — A such that ¢(e;) = a; for all i. Then
A= B®Z". Let n; be the exponent of B (lem of orders is the highest order in this case).
Choose b1 € B of order ny; then A = (b)) & A/ (b1) = Z/m1Z & A/ (b1). Repeat with na,
etc. We get A = Z/miZ & --- ® Z/niZ. Uniqueness follows from the uniqueness of the
exponent of a group. O

Example 1.1. Here is an example of this decomposition.

7)27. & LJAZ & L/3Z. & L/9Z. & Z/9Z. & /5T = 7./360Z & Z/36Z & Z/ 2.

1.3 Group actions

Definition 1.3. A group action is a map - : G x X — X such that
l. ez =z,
2. g-(h-z)=(gh)- .
The pair of G with the action on X is called a G-set.
Remark 1.1. These are left G-sets. We can define right G-sets in a similar way.
Example 1.2. Sx acts on X by o -z = o(x).

Example 1.3. D,, acts on the vertices of a regular n-gon by rotating and reflecting them.



Example 1.4. GL,(R) for a ring R acts on R" viewed as column vectors.

Definition 1.4. G-set is the category with objects a set X with a G-action G x X — X
and morphisms f: X — Y such that f(g-z) =g f(z) forall x € X and g € G.

Definition 1.5. Teorbitof z € X is G-z ={g-z:9€ G} C X.
Remark 1.2. Being in the same orbit gives an equivalence relation on X.
Definition 1.6. The stabilizer is G, ={g € G: g -z =2} CG.

Definition 1.7. G acts transitively on X if it has just one orbit (G-z = X for all z € X).
G acts faithfully if no element of G \ {e} fixes all z € X; ie. (,cy Gz = {e}.

Example 1.5. Sx acts transitively and faithfully on X. The stabilizer of x € X is Sx\ (4},
viewed as a subgroup of Sx.

Example 1.6. D,, acts faithfully and transitively on vertices/edges. The stabilizer of the
vertex is the subgroup generated by reflection across the axis through 0 and the vertex.

Example 1.7. G acts faithfully and transitively on G by left multiplication but not neces-
sarily by conjugation if G # {e}. With the action of conjugation, the orbits are conjugacy
classes Cp = {gzg™' : g € G}. Z(G) = Nyex Za # {e}, where Z, = {g € G : gug™! =z},
so if Z(G) # {e}, then this is nontrivial.

Example 1.8. G acts on subsets S C G by conjugation. The orbits are conjugate subsets.
The stabilizer of S is Ng(S), the normalizer of S. Ng(S) = {g € G : gSg~! = S}. Note
that Ng(S) acts on S by conjugation. So (,cqZs = Zaq(S) = {9 € G : gs = sgVx € S},
which is called the centralizer of S.
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