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1 Krull-Schmidt, Structure of Finitely Generated Abelian
Groups, and Group Actions

1.1 The Krull-Schmidt theorem

Theorem 1.1 (Krull-Schmidt). Suppose G has normal subgroups Ni E G for 1 ≤ i ≤ r.
Then G ∼= N1 × · · · ×Nr iff Ni ∩

∏r
j=1
j 6=i

Nj = {e} and N1 · · ·Nr = G.

Proof. For r = 2, N1 ∩ N2 = {e} and N1N2 = G. Then if ni ∈ Ni, n1n2n
−1
1 = n′2 ∈ N2.

Then n2n
−1
1 n−12 = n−11 n′2n

−1
2 ∈ N1. But this is the product of something in N1 and

something in N2, and N1 ∩ N2 = {e}, so n′2n
−1
2 = e. So n′2 = n2, which gives us that n1

and n2 commute. So G = N oN2 = N1 ×N2.
Now induct on r. Suppose this is true for r. Then N1 · · ·Nr ∩ Nr+1 = {e} and

N1 · · ·Nr+1 = G. By induction, N1 · · ·Nr = N1 × · · · × Nr. Applying the r = 2 case, we
get G = N1 × · · · ×Nr ×Nr+1.

Corollary 1.1. Let n = pr11 · · · p
rk
k with pi distinct primes and ri ≥ 1. Then

Z/nZ ∼= Z/pr11 Z× · · · × Z/prkk Z.

Corollary 1.2. If gcd(m,n) = 1, then

Z/mnZ ∼= nZ/mnZ×mZ/mnZ ∼= Z/mZ× Z/nZ.

1.2 The structure theorem for finitely generated abelian groups

Definition 1.1. An abelian group is torsion-free if for all a ∈ A\{0} and n ≥ 1, na 6= 0.

Definition 1.2. The torsion subgroup B of A is the subgroup of elements of A of finite
order.
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Theorem 1.2 (structure theorem for finitely generated abelian groups). Let A be a finitely
generated abelian group. Then there exists a unique r, k ≥ 0 and positive integers ni ≥ 1
with nk | nk−1 | · · · | n1 such that

A ∼= Zr × Z/n1Z× · · ·Z/nkZ.

Proof. We claim that torsion-free finitely generated abelian groups are free. Here is a
sketch: Choose a1, . . . , ar ∈ A giving a minimal set of generators. We get π : Zr → A
sending ei 7→ ai, where ei is the i-th coordiate unit element. Suppose x =

∑r
i=1 biei ∈

ker(π). Let d = gcd(b1, . . . , br). If d 6= 1, there exists a y ∈ Zr with dy = x. Then
y ∈ ker(π). So we may assume d = 1. There exists φ ∈ Aut(Zr) = GLr(Z) such that

φ(e1) = x. Then Zr φ−→ Zr π−→ A sends e1 7→ x 7→ 0. But then π ◦ φ(ei) for 2 ≤ i ≤ r
generate A, contradicting minimality. So A ∼= Zr. For uniqueness, if A ∼= Zr ∼= Zs, then
A/2A ∼= Fr2 ∼= Fs2, so r = s.

Let B be the torsion subgroup of A. Note that A/B is torsion-free. We get an exact
sequence

0→ B → A→ Zr → 0.

We want to go back from Zr → A. Then for ei ∈ Zr, there exists some ai ∈ A that maps
to ei. Since Zr is free in Ab, there exists ι : Zr → A such that ι(ei) = ai for all i. Then
A ∼= B ⊕Zr. Let n1 be the exponent of B (lcm of orders is the highest order in this case).
Choose b1 ∈ B of order n1; then A ∼= 〈b1〉 ⊕ A/ 〈b1〉 ∼= Z/n1Z ⊕ A/ 〈b1〉. Repeat with n2,
etc. We get A ∼= Z/n1Z ⊕ · · · ⊕ Z/nkZ. Uniqueness follows from the uniqueness of the
exponent of a group.

Example 1.1. Here is an example of this decomposition.

Z/2Z⊕ Z/4Z⊕ Z/8Z⊕ Z/9Z⊕ Z/9Z⊕ Z/5Z ∼= Z/360Z⊕ Z/36Z⊕ Z/2Z.

1.3 Group actions

Definition 1.3. A group action is a map · : G×X → X such that

1. e · x = x,

2. g · (h · x) = (gh) · x.

The pair of G with the action on X is called a G-set.

Remark 1.1. These are left G-sets. We can define right G-sets in a similar way.

Example 1.2. SX acts on X by σ · x = σ(x).

Example 1.3. Dn acts on the vertices of a regular n-gon by rotating and reflecting them.
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Example 1.4. GLn(R) for a ring R acts on Rn viewed as column vectors.

Definition 1.4. G-set is the category with objects a set X with a G-action G×X → X
and morphisms f : X → Y such that f(g · x) = g · f(x) for all x ∈ X and g ∈ G.

Definition 1.5. Te orbit of x ∈ X is G · x = {g · x : g ∈ G} ⊆ X.

Remark 1.2. Being in the same orbit gives an equivalence relation on X.

Definition 1.6. The stabilizer is Gx = {g ∈ G : g · x = x} ⊆ G.

Definition 1.7. G acts transitively on X if it has just one orbit (G·x = X for all x ∈ X).
G acts faithfully if no element of G \ {e} fixes all x ∈ X; i.e.

⋂
x∈X Gx = {e}.

Example 1.5. SX acts transitively and faithfully on X. The stabilizer of x ∈ X is SX\{x},
viewed as a subgroup of SX .

Example 1.6. Dn acts faithfully and transitively on vertices/edges. The stabilizer of the
vertex is the subgroup generated by reflection across the axis through 0 and the vertex.

Example 1.7. G acts faithfully and transitively on G by left multiplication but not neces-
sarily by conjugation if G 6= {e}. With the action of conjugation, the orbits are conjugacy
classes Cx = {gxg−1 : g ∈ G}. Z(G) =

⋂
x∈X Zx 6= {e}, where Zx = {g ∈ G : gxg−1 = x},

so if Z(G) 6= {e}, then this is nontrivial.

Example 1.8. G acts on subsets S ⊆ G by conjugation. The orbits are conjugate subsets.
The stabilizer of S is NG(S), the normalizer of S. NG(S) = {g ∈ G : gSg−1 = S}. Note
that NG(S) acts on S by conjugation. So

⋂
x∈S Zx = ZG(S) = {g ∈ G : gs = sg ∀x ∈ S},

which is called the centralizer of S.
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